

# COURSE PLAN

### FIRST: AUTOMOTIVE ENGINEERING

| College             |                                   |     |            |          |      |
|---------------------|-----------------------------------|-----|------------|----------|------|
| College             | Faculty of Engineering Technology |     |            |          |      |
| Department          | Mechanical Engineering            |     |            |          |      |
| Course              |                                   |     |            |          |      |
| Course Title        | Thermal Engineering               |     |            |          |      |
| <b>Course Code</b>  | 020201146                         |     |            |          |      |
| <b>Credit Hours</b> | 2 (2 Theoretical, 0 Practical)    |     |            |          |      |
| Prerequisite        |                                   |     |            |          |      |
| Instructor          |                                   |     |            |          |      |
| Name                | Dr. Waleed Mom                    | ani |            |          |      |
| Office No.          | 199                               |     |            |          |      |
| Tel (Ext)           | 199                               |     |            |          |      |
| E-mail              | Momani.w@bau.edu.jo               |     |            |          |      |
| <b>Office Hours</b> |                                   |     |            |          |      |
| <b>Class Times</b>  | Building                          | Day | Start Time | End Time | Room |
|                     |                                   |     |            |          |      |
|                     | I                                 |     |            |          |      |

| Text Book |   |                                                                                                 |   |
|-----------|---|-------------------------------------------------------------------------------------------------|---|
| Title     | : | 1 محاضرات في الديناميكا الحرارية ، اعداد م محمد حسن جبر                                         |   |
|           |   | 2 أساسيات الديناميكا الحرارية الكالسيكية، الطبعة الثانية ، و ايلن و سو نتاج، مركز الكتب الأرين. | ) |

### References

1. Thermodynamics: An Engineering Approach, Y. Cengel, M. Boles, 4th edition, McGraw Hill

2. Thermodynamics: Dr. Waleed Momani, Eng. Ayad Aldahwki, and Eng. Mahmud Alomari

#### SECOND: PROFESSIONAL INFORMATION COURSE DESCRIPTION

This course covers a theoretical knowledge of the concepts and definitions, work and heat, first law of thermodynamics, second law of thermodynamics, ideal gas, properties of a pure substance, principles of heat transfer, steady state conduction, fins, radiation and heat exchangers.

### **COURSE OBJECTIVES**

The objective of this course is to enable the student to do the following:

Explain the concepts and definitions of thermal engineering

Explain the properties of a pure substance.

Explain the work and heat.

Explain the laws of thermodynamics-

Explain thermodynamic tables-

Explain the principles of heat transfer, conduction and radiation-

Explain fins and heat exchangers



### COURSE LEARNING OUTCOMES

By the end of the course, the students will be able to:

- CLO1. Explain the concepts and definitions of thermal engineering
- CLO2. Explain the properties of a pure substance
- CLO3. Explain the work and heat

CLO4. Explain the first law of thermodynamics

- CLO5. Explain the second law of thermodynamics
- CLO6. Explain thermodynamic tables

CLO7. Explain the principles of heat transfer

CLO8. Explain the steady state conduction

CLO9. Explain the radiation heat transfer

CLO10. Explain fins and heat exchangers

### COURSE SYLLABUS

| Week | Topic                            | Topic Details                                                                                                                                                                                                                                                                                             | Reference<br>(Chapter) | Proposed<br>Assignments |
|------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|
| 1    | Concepts and definitions 1       | <ul> <li>System</li> <li>Processes</li> <li>Cycles</li> <li>Specific Volume</li> </ul>                                                                                                                                                                                                                    | CL01                   |                         |
| 2    | Concepts and definitions 2       | <ul> <li>Pressure</li> <li>Temperature scales</li> <li>Zeroth law of thermodynamics</li> <li>Units</li> </ul>                                                                                                                                                                                             | CLO1                   | Report                  |
| 3    | Properties of a pure substance 1 | <ul> <li>Pure Substance</li> <li>Phases of a Pure substance</li> <li>Phase-Change Processes of Pure Substances <ul> <li>a) Compressed Liquid and Saturated Liquid</li> <li>b) Saturated Vapor and Superheated Vapor</li> <li>c) Saturation Temperature and Saturation<br/>Pressure</li> </ul> </li> </ul> | CLO2                   |                         |
| 4    | Properties of a pure substance 2 | <ul> <li>Property Diagrams for Phase-Change<br/>Processes <ul> <li>a) The T-v Diagram</li> <li>b) The P-v Diagram</li> </ul> </li> <li>Extending the Diagrams to Include the Solid<br/>Phase <ul> <li>a) The P-T Diagram</li> </ul> </li> <li>The P-v-T Surface</li> </ul>                                | CLO2                   | Report                  |
| 5    | Work and heat 1                  | <ul> <li>Definition and units of work</li> <li>Work done at the moving boundary of a simple compressible system.</li> <li>Polytropic Process</li> <li>Energy Balance for Closed Systems</li> <li>Specific Heats</li> </ul>                                                                                | CLO3                   |                         |
| 6    | Work and heat 2                  | <ul> <li>Definition and units of heat</li> <li>Relation between work and heat</li> <li>Internal Energy, Enthalpy, and Specific Heats of Ideal Gases</li> </ul>                                                                                                                                            | CLO3                   | Report                  |



| Week | Торіс                            | Topic Details                                                                                                                                                                                                                                                                | Reference<br>(Chapter) | Proposed<br>Assignments |
|------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|
|      |                                  | a) Specific Heat Relations of Ideal Gases                                                                                                                                                                                                                                    |                        |                         |
| 7    | First law of thermodynamics      | <ul> <li>The change in state of a system</li> <li>Internal energy</li> <li>Enthalpy</li> <li>Internal energy</li> <li>Enthalpy and constant volume</li> </ul>                                                                                                                | CLO4                   |                         |
| 8    |                                  | Midterm Exam                                                                                                                                                                                                                                                                 |                        |                         |
| 9    | First law of thermodynamics      | <ul> <li>Pressure specific heats for ideal gases</li> <li>The first law of thermodynamics for a control volume</li> <li>The steady state, steady flow process</li> </ul>                                                                                                     | CLO4                   | Report                  |
| 10   | The second law of thermodynamics | <ul> <li>Heat engine, refrigerator and heat pump</li> <li>Reversible process</li> <li>Carnot cycle and reverse Carnot cycle</li> <li>Reversible process and entropy</li> <li>Entropy change of an ideal gas</li> <li>Polytrophic and adiabatic reversible process</li> </ul> | CLO5                   |                         |
| 11   | Thermodynamic tables             | <ul> <li>Properties of a pure substance</li> <li>Vapor liquid-solid phase equilibrium in a pure substance</li> <li>Equation of a state, tables of thermodynamic properties.</li> </ul>                                                                                       | CLO6                   |                         |
| 12   | Principles of heat<br>transfer   | <ul> <li>Conduction heat transfer</li> <li>Plane wall</li> <li>Plane wall in series and parallel</li> <li>Electro analog for conduction</li> <li>Contact resistance</li> <li>Convection heat transfer</li> </ul>                                                             | CLO7                   | Report                  |
| 13   | Steady state conduction          | • Steady one dimensional conduction equation in rectangular coordinates and cylindrical coordinates.                                                                                                                                                                         | CLO8                   |                         |
| 14   | Radiation                        | <ul> <li>Physics of radiation, planks law</li> <li>Radiation properties</li> <li>Gray bodies</li> <li>Black body</li> </ul>                                                                                                                                                  | CLO9                   |                         |
| 15   | fins and heat<br>exchangers      | <ul> <li>Fins, types of fins</li> <li>Fin efficiency</li> <li>Heat exchangers types</li> <li>Overall heat transfer coefficient</li> <li>The log-mean temperature difference.</li> </ul>                                                                                      | CLO10                  |                         |
| 16   |                                  | Final Exam                                                                                                                                                                                                                                                                   |                        |                         |



# COURSE LEARNING RESOURCES

The effectiveness of teaching in this course depends on making students familiar with the work and heat, first law of thermodynamics, second law of thermodynamics, ideal gas, properties of a pure substance, Principles of heat transfer, steady state conduction, fins, radiation, and heat exchangers.

Teaching methods:

• Lectures and Home Works: using PowerPoint for, example, by the teacher to provide the students with the all information that they need,

Online research skills, watching related videos such as you tube, on topics related to course objectives and recent developments in the field of specific work.
Learning skills.

### **ONLINE RESOURCES**

https://www.barnesandnoble.com/w/automotive-technology-james-d-halderman https://www.youtube.com/watch?v=3mhRD8yzB2E https://www.youtube.com/watch?v=wfvVFA1Q2C0

### ASSESSMANT TOOLS

(Write assessment tools that will be used to test students ability to understand the course material and gain the skills and competencies stated in learning outcomes

| ASSESSMENT TOOLS       | %   |
|------------------------|-----|
| Quizzes                | 6   |
| Quizzes                | 6   |
| Researches and Reports | 8   |
| Mid Exam               | 30  |
| Final Exam             | 50  |
| TOTAL MARKS            | 100 |

### **THIRD: COURSE RULES**

**ATTENDANCE RULES** 

Attendance and participation are extremely important, and the usual University rules will apply. Attendance will be recorded for each lab. Absence of 10% will result in a first written warning. Absence more than 15% of the course with or without medical reasons will result in forfeiting the course and the student will not be permitted to attend the final examination

# **GRADING SYSTEM**

**Example:** 

0 – 49 Fail

50 – 100 Pass

### REMARKS

{The instructor can add any comments and directives such as the attendance policy and topics related to ethics}



| COURSE COORDINATOR                    |                  |  |
|---------------------------------------|------------------|--|
| Course Coordinator: Dr. Waleed Momani | Department Head: |  |
| Signature:                            | Signature:       |  |
| Date:                                 | Date:            |  |